3/12/25

Estado de oxidacion


Los estados de oxidación no son otra cosa que la carga que asignamos a los átomos en una molécula o ión, partiendo de la suposición de que todos los enlaces presentes en esta son 100% iónicos.

Esta suposición es por supuesto errónea y ficticia. Sin embargo, la asignación de números de oxidación es útil para calcular el número de electrones intercambiados en reacciones redox.

En este link pueden consultar ESTADOS DE OXIDACIÓN MÁS HABITUALES DE LOS ELEMENTOS QUÍMICOS.. (cortesia de la Universidad Nacional de Lujan) Esta en formato de pdf. Asi que pueden descargarlo o imprimirlo

2/12/25

Equilibrio Quimico Qc y Kc

Equilibrio Quimico: Qc y Kc

Para una reacción general que no haya conseguido alcanzar el equilibrio se escribe como: a A + b B →←c C + d D se puede calcular un Qc de la siguiente manera:

Qc = [C]c [D]d/ [A]a [B]b

Donde Q es el llamado cociente de reacción, y las concentraciones expresadas en él no son las concentraciones en el equilibrio. Vemos que la expresión de Q tiene la misma forma que la de Kc cuando el sistema alcanza el equilibrio.

Este concepto de cociente de reacción es de gran utilidad, pues puede compararse la magnitud Q con la Kc para una reacción en las condiciones de presión y temperatura a que tenga lugar, con el fin de prever si la reacción se desplazará hacia la derecha (aumentando la concentración de reactivos) o hacia la izquierda.

Así, por ejemplo, si en un momento determinado Q < Kc, como el sistema tiende por naturaleza al equilibrio, la reacción hacia la derecha se producirá en mayor medida que la que va hacia la izquierda. Al contrario, cuando Q > Kc, la reacción predominante será la inversa, es decir, de derecha a izquierda, hasta alcanzar el equilibrio.

Entonces recuerda que:

Si:
• Q < Kc predomina la reacción hacia la derecha, hasta llegar al equilibrio. • Q = Kc el sistema está en equilibrio • Q > Kc predomina la reacción hacia la izquierda, hasta llegar al equilibrio

29/11/25

REDOX EN RESUMEN

1. Todas las reacciones electroquímicas implican trasferencias de electrones y son por lo tanto reacciones redox.

2. En una celda galvánica, la electricidad se produce por una reacción química espontánea.

La oxidación en el ánodo y la reducción en el cátodo se producen en forma
separada, y los electrones fluyen a través de un circuito externo.


3. Las dos partes de una celda galvánica son las semiceldas, y las reacciones en los electrodos son las reacciones de semicelda. Un puente salino permite el flujo de iones entre las dos partes de la celda.

4. La fuerza electromotriz (fem) de una celda es la diferencia de potencial que existe entre los dos electrodos. En el circuito externo de una celda galvánica los electrones fluyen del ánodo hacia el cátodo. En la disolución, los aniones se mueven hacia el ánodo y los cationes hacia el cátodo.

5. La cantidad de electricidad trasportada por 1 mol de electrones es 1 faraday, que es igual a 96500 coulombios.

6. Los potenciales estándar de reducción muestran la afinidad relativa de las reacciones de semicelda de reducción, y pueden ser utilizados para predecir los productos, dirección y espontaneidad de las reacciones redox entre varias sustancias.

7. La disminución en la energía libre del sistema en una reacción espontánea es igual al trabajo eléctrico hecho por el sistema sobre su entorno,
o ∆Gº =-nEºF

8. La constante de equilibrio para una reacción redox puede encontrarse a partir de la fuerza electromotriz de una celda.

9. La ecuación de Nernst da una relación entre la fem de la celda y la concentración de los reactivos y productos en condiciones distintas a las del estado estándar.

10. Las baterías, que constan de una o más celdas electroquímicas, se usan ampliamente como fuentes de energía autosuficientes. Algunas de las baterías mejor conocidas son las baterías de pilas secas, como la celda de Leclanché, la batería de mercurio, la batería de níquel-cadmio y el acumulador de plomo que se usa en los automóviles.

11. La corrosión de los metales, cuyo ejemplo más común es la oxidación del hierro, es un fenómeno electroquímico.

12. La corriente eléctrica de una fuente externa se usa para provocar una reacción química no espontánea en una celda electrolítica. La cantidad de producto formado o de reactivo consumido depende de la cantidad de electricidad trasferida en el electrodo.
Tomado de http://www.uclm.es/profesorado/afantinolo/Docencia/Inorganica/Tema2/ResumenT2IQ.pdf

11/11/25

Modelos atómicos (resumen)

Modelo atómico de Dalton (1766-1844)
  • cada elemento está formado por partículas indivisibles extremadamente pequeñas, llamadas átomos
  • todos los átomos de un elemento son idénticos entre sí (ej. masa) pero diferentes de las de otro elemento
Modelo atómico de Thomson (1897)
  • el átomo es una esfera cargada positívamente en cuyo interior están los electrones (partícula negativas)
Modelo atómico de Rutherford (1911)
  • Los átomos no son macizos, sino que etán vacíos y en su centro hay un diminuto núcleo 
  • núcleo central cargado positivamente con electrones (negativos) girando alrededor de él

3/9/25

Atomos y Particulas Subatomicas

La palabra átomo proviene del idioma griego y significa “no divisible” o “indivisible” por lo que el átomo se consideraría la particular mas pequeña de la materia que no se puede dividir. Este concepto fue inventado por Demócrito en el 400 ac y en aquella época se creía que el átomo era efectivamente la particula más pequeña posible de la materia (lo cual no es cierto ya que hay partículas subatómicas)

En los átomos se reconoce la existencia de partículas con carga eléctrica negativa, llamados electrones, los cuales giran en diversas "órbitas" o niveles de energía, alrededor de un núcleo central con carga eléctrica positiva. El átomo en su conjunto y sin la presencia de perturbaciones externas es eléctricamente neutro.

Centro del núcleo se encuentran otras partícula, los protones, que poseen carga eléctrica positiva, y los neutrones que no poseen carga eléctrica. Así pues dentro del átomo encontramos:

EL ELECTRÓN : Es una partícula elemental con carga eléctrica negativa igual a 1,602 x 10-19 Coulomb y masa igual a 9,1083 x 10-28 g, que se encuentra formando parte de los átomos de todos los elementos

EL NEUTRÓN: Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón, que se encuentra formando parte de los átomos de todos los elementos

EL PROTÓN: Es una partícula elemental con carga eléctrica positiva igual a 1,602 x 10-19 Coulomb y cuya masa es 1837 veces mayor que la del electrón. La misma se encuentra formando parte de los átomos de todos los elementos.

En un átomo de un elemento cualquiera se tiene la misma cantidad de protones y de electrones . Esta cantidad recibe el nombre de número atómico, y se designa por la letra "Z".
A la cantidad total de protones más neutrones presentes en un núcleo atómico se denomina número másico y se designa por la letra "A".

Si designamos por "X" a un elemento químico cualquiera, su número atómico y másico se representa por la siguiente simbología:

A
X
z

Por ejemplo, para el Sodio tenemos:



Así el número de neutrones resulta de la ecuacion neutrones (n) = A - Z

2/9/25

Que es estequiometria?

Una reacción química es el proceso en el cual una sustancia (o sustancias) cambia para formar una o más sustancias nuevas, es decir es un proceso de cambio de unos reactivos iniciales a unos productos finales

Las reacciones químicas se representan mediante ecuaciones químicas. Por ejemplo el carbono (C) podría reaccionar con oxígeno gaseoso (O2) para formar dióxido de carbono(CO2). La ecuación química para esta reacción se escribe:

C + O2 = CO2

El '+' se lee como “reacciona con” y la flecha significa “produce”. Las fórmulas químicas a la izquierda de la flecha representan las sustancias de partida denominadas reactivos. A la derecha de la flecha están las formulas químicas de las sustancias producidas denominadas productos de la reacción. Los números al lado de las formulas son los coeficientes( el coeficiente 1 se omite).

En la reacción anterior el C y el O2 son los reactivos, el CO2 el producto.

La reacción de formación del agua se escribe:

2H2 + O2 = 2H2O

Nótese en la reacción anterior (formación del agua) que el numero de átomos de cada elemento a cada lado de la ecuación es el mismo:

Según la ley de la conservación de la masa los átomos ni se crean, ni se destruyen, durante una reacción química. Por lo tanto una ecuación química ha de tener el mismo número de átomos de cada elemento a ambos lados de la flecha. Se dice entonces que la ecuación está balanceada.

Como se balancean las ecuaciones químicas?

1) Se sigue un procedimiento estandarizado que se describe a continuación:

2) Se determinan los reactivos y los productos de la reacción química

3) Se escribe la ecuación química reactivos a productos

4) Se balancea la ecuación de la siguiente forma:

-- Se empieza por igualar la ecuación probando diferentes coeficientes para lograr que el número de átomos de cada elemento sea igual en ambos lados de la ecuación. Los subíndices de las fórmulas no se pueden cambiar).

-- Primero se buscan los elementos que aparecen una sola vez en cada lado de la ecuación y con igual número de átomos: las fórmulas que contienen estos elementos deben tener el mismo coeficiente. Por lo tanto, no es necesario ajustar los coeficientes de estos elementos en ese momento.

-- Después se buscan los elementos que aparecen sólo una vez en cada lado de la ecuación, pero con diferente número de átomos y se balancean estos elementos. Por último se balancean los elementos que aparecen en dos o más fórmulas del mismo lado de la ecuación.

--Se verifica que la ecuación igualada tenga el mismo número total de átomos de cada tipo en ambos lados de la flecha de la ecuación.

Ejemplo:
Consideremos la combustión del gas metano (CH4). Esta reacción consume oxígeno (O2) y produce agua (H2O) y dióxido de carbono (CO2). Podemos entonces escribir la ecuación química:

CH4 + O2 = CO2 + H2O

Ahora contamos el número de átomos de cada elemento en reactivos y productos:

Reactivos:
C =1, H = 4, O = 2

Productos:
C = 1, H = 2, O = 3,

El carbono y el hidrógeno aparecen en un compuesto de los reactivos y en otro de los productos.

Hay igual numero de átomos de carbono en los reactivos que en los productos, pero dos veces más hidrógeno en los reactivos que en los productos y 1,5 veces mas oxigeno en los productos que en los reactivos.

Esto se puede arreglar balanceando la reacción, de manera de igualar el numero de átomos de cada especie química en cada lado de la ecuación. El carbono ya esta igualado, o sea no hay que hacer nada. Para el H hay que multiplicar por dos (2) en el agua, así ahora hay 4 átomos de H a cada lado. Pero ahora tenemos que a la derecha (productos) hay 4 átomos de oxigeno (dos del CO2 y dos del 2H2O), mientras que a la izquierda solo dos, por lo cual hay que multiplicar por dos el Oxigeno de la izquierda (reactivos)

CH4 + 2O2 = CO2 + 2H2O

Ahora ya tenemos la ecuación balanceada y la podemos leer como:

una molécula de metano reaccionan con dos de oxígeno produciendo una molécula de dióxido de carbono y dos moléculas de agua.

El estado físico de los reactivos y productos puede indicarse mediante los símbolos (g), (l) y (s), para indicar los estados gaseoso, líquido y sólido, respectivamente.
Por ejemplo:

CH4(g) + 2O2(g) = CO2(g) + 2H2O (l)

Lo ideal es que en una reacción química los reactivos estuviesen en la correcta proporción estequiométrica, es decir en aquella proporción que describe la ecuación química balanceada. Sin embargo, lo usual suele ser que se use un exceso de uno o más reactivos, para conseguir que reaccione la mayor cantidad posible del reactivo menos abundante.

14/8/25

¿Como se le dan los nombres a los átomos?

Seguramente alguna vez te habrás preguntado de como es que los elementos químicos tienen esos símbolos tan partículares.  ¿por qué el metal oro se tiene como símbolo Au o por que existe un elemento llamado Germanio (Ge). 

Te invito a que vistes el sitio Preguntas de química para la respuesta a esta interrogante

Entrada destacada

AMAZON: Guía Practica Balanceo Redox