16/6/12

La corrosión como fenomeno electroquímico

El proceso de corrosión es natural y espontáneo. La corrosión es en esencia un fenómeno electroquímico. Mas específicamente, una reacción electroquímica o del tipo REDOX. La corrosión se da por un flujo eléctrico masivo generado por las diferencias químicas entre las piezas implicadas

La corrosión electroquímica se establece cuando en una misma pieza metálica ocurre una diferencia de potencial en zonas muy próximas. Los electrones fluyen desde la zona de mayor potencial de oxidación (área anódica) a la zona de menor potencial de oxidación (área catódica). El conjunto de las dos semi reacciones (oxidación-reducción) constituye una célula de corrosión electroquímica.

Los siguientes gráficos muestran el proceso de corrosión mediado por oxigeno. Puede verse como el hiero sólido (Fe) es transformado en hierro iónico (Fe+2). Esto es una oxidación (perdida de electrones). EL resultado neto es perdida de material de hierro de la pieza.

Resumiendo REDOX........

1. Todas las reacciones electroquímicas implican trasferencias de electrones y son por lo tanto reacciones redox.

2. En una celda galvánica, la electricidad se produce por una reacción química espontánea.

La oxidación en el ánodo y la reducción en el cátodo se producen en forma
separada, y los electrones fluyen a través de un circuito externo.


3. Las dos partes de una celda galvánica son las semiceldas, y las reacciones en los electrodos son las reacciones de semicelda. Un puente salino permite el flujo de iones entre las dos partes de la celda.

4. La fuerza electromotriz (fem) de una celda es la diferencia de potencial que existe entre los dos electrodos. En el circuito externo de una celda galvánica los electrones fluyen del ánodo hacia el cátodo. En la disolución, los aniones se mueven hacia el ánodo y los cationes hacia el cátodo.

5. La cantidad de electricidad trasportada por 1 mol de electrones es 1 faraday, que es igual a 96500 coulombios.

6. Los potenciales estándar de reducción muestran la afinidad relativa de las reacciones de semicelda de reducción, y pueden ser utilizados para predecir los productos, dirección y espontaneidad de las reacciones redox entre varias sustancias.

7. La disminución en la energía libre del sistema en una reacción espontánea es igual al trabajo eléctrico hecho por el sistema sobre su entorno,
o ∆Gº =-nEºF

8. La constante de equilibrio para una reacción redox puede encontrarse a partir de la fuerza electromotriz de una celda.

9. La ecuación de Nernst da una relación entre la fem de la celda y la concentración de los reactivos y productos en condiciones distintas a las del estado estándar.

10. Las baterías, que constan de una o más celdas electroquímicas, se usan ampliamente como fuentes de energía autosuficientes. Algunas de las baterías mejor conocidas son las baterías de pilas secas, como la celda de Leclanché, la batería de mercurio, la batería de níquel-cadmio y el acumulador de plomo que se usa en los automóviles.

11. La corrosión de los metales, cuyo ejemplo más común es la oxidación del hierro, es un fenómeno electroquímico.

12. La corriente eléctrica de una fuente externa se usa para provocar una reacción química no espontánea en una celda electrolítica. La cantidad de producto formado o de reactivo consumido depende de la cantidad de electricidad trasferida en el electrodo.
Tomado de http://www.uclm.es/profesorado/afantinolo/Docencia/Inorganica/Tema2/ResumenT2IQ.pdf

Celdas galvanicas y electroliticas

Las celdas electroquímicas pueden ser de dos tipos: galvánicas o electrolíticas.

Las celdas galvánicas (también llamadas voltáicas) almacenan energía química. En éstas, las reacciones en los electrodos ocurren espontáneamente y producen un flujo de electrones desde el ánodo al cátodo (a través de un circuito externo conductor). Dicho flujo de electrones genera un potencial eléctrico que puede ser medido experimentalmente.

Un ejemplo de celda galvánica puede verse en la figura de abajo. Un electrodo de cobre esta sumergido en un recipiente que contiene sulfato de cobre II y otro electro (de Zinc) esta sumergido en otro recipiente en una solución de sulfato de zinc. En cada electrodo ocurre una de las semi-reacciones: oxidación o reducción. Ambos recipientes se comunican con un puente salido que permite mantener un flujo de iones de un recipiente a otro. La conexión a un voltímetro evidencia la generación de un potencial eléctrico.

Las celdas electrolíticas por el contrario no son espontáneas y debe suministrarse energía para que funcionen. (fíjese en la otra figura). Al suministrar energía se fuerza una corriente eléctrica a pasar por la celda y se fuerza a que la reacción redox ocurra.

4/6/12

Para balancear ecuaciones REDOX.......

Para entender este método se debe tener claro las disociaciones de ácidos, bases y sales (electrolitos) estudiados en el Equilibrio Iónico.
Los ácidos se disocian en H+ y el anión negativo.
Ejemplo:
NO3 se disocia en H+ NO3-
H2SO4 se disocia en H2+ y SO4 -2
3PO4 se disocia en H3+PO4-3
Las bases se disocian en el catión positivo y el OH-

Ejemplo:
NaOH se disocia en Na+OH-
Mg(OH)2 se disocia en Mg+2(OH)2-
Al(OH)3 se disocia en Al+3 (OH)3-

Las sales se disocian en catión positivo y el anión negativo.

Ejemplo:

AgCl se disocia en Ag+Cl-

AgNO3 se disocia en Ag+NO3-

Cu(NO3)2 se disocia en Cu+2 (NO3)2-

Al2(SO4)3 se disocia en Al2+3 (SO4)3-2

PASOS PARA IGUALAR ECUACIONES POR IÓN-ELECTRÓN1.- Si la ecuación está en forma molecular pasarla a forma iónica. Aquí hay que tener en cuenta que los elementos libres, los óxidos, el H2O y el H2O2 no se disocian, sólo se disocian los electrolitos (ácidos, bases y sales). Ilustraremos todos los pasos con el siguiente ejemplo:



I2 + HNO3 -------> HIO3 + NO + H2O (Molecular) Se pasa a forma iónica;

I2 + H+NO3- -----------> H+IO3- + NO + H2O (Iónica)
2.- Se escribe por separado el esqueleto de las ecuaciones iónicas parciales del agente oxidante y el agente reductor.

NO3- --------> NO

3.- Se balancea por tanteo (inspección) los átomos distintos de H y O :
I2 ----------> 2IO3-
NO3- ----------> NO
4.- Igualar los átomos de oxígenos agregando moléculas de H2O para balancear los oxígenos:

3 I2 + 18 H2O ------->6 IO3- + 36H+ + 30 e-

I2 + 6H2O --------> 2IO3-







6.- Contar la carga total en ambos lados de cada ecuación parcial y agregar e- en el miembro deficiente en carga negativa (-) o que tenga exceso de carga positiva (+)I2 + 6H2O ---------> 2IO3- + 12H+ + 10 e- (oxidación)

NO3- + 4H+ + 3e- ------> NO
+ 2H2O (reducción)
7.- Igualar el número de e- perdidos por el agente reductor, con los e- ganados por el agente oxidante, multiplicando las ecuaciones parciales por los número mínimos necesario para esto.
3 x (I2 + 6H2O ----->2IO3- + 12H+ + lOe-)


10x (NO3- + 4H+ + 3e- ------->NO + 2H2O)


8.- Súmese las dos medias reacciones cancelando cualquier cantidad de e-, H+, OH- o H2O que aparezca en ambos lados, con lo cual se obtendrá la ecuación finalmente balanceada.

10 NO3- + 40 H+ + 30 e- -------> 10 NO + 20 H2O



SUMANDO:
3I2 + 10NO3- + 4H+ --------> 6IO3- + 10NO + 2H2O

-Si la ecuación fue dada originalmente en forma iónica, ésta es la respuesta del problema.

-Si la ecuación fue dada originalmente en forma molecular; se trasladan estos coeficientes a la ecuación molecular y se inspeccionan el balanceo de la ecuación:

3I2 + 10HNO3 -------> 6HIO3 + 10NO + 2H2O

Estado de oxidacion


Los estados de oxidación no son otra cosa que la carga que asignamos a los átomos en una molécula o ión, partiendo de la suposición de que todos los enlaces presentes en esta son 100% iónicos.

Esta suposición es por supuesto errónea y ficticia. Sin embargo, la asignación de números de oxidación es útil para calcular el número de electrones intercambiados en reacciones redox.

En este link pueden consultar ESTADOS DE OXIDACIÓN MÁS HABITUALES DE LOS ELEMENTOS QUÍMICOS.. (cortesia de la Universidad Nacional de Lujan) Esta en formato de pdf. Asi que pueden descargarlo o imprimirlo

Entrada destacada

AMAZON: Guía Practica Balanceo Redox