30/4/12

Importancia del volumen final en una solucion

Cuando preparamos una solucion con dos liquidos podriamos asumir erroneamente que el volumen final de la solucion va a ser la suma de los volumenes que hemos mezclado. Esto es erroneo y para demostrarlo en la practica he encontrado un video demostrativo. Fijense que al final el volumen no se iguala a la suma de los volumenes iniciales.

¿Un metal de menor densidad que el aire?


En las historias de ciencia ficción las naves, herramientas y armas de los extraterrestres casi siempre están hechas de un material “muy ligero, extremadamente resistente y de una estructura y composición desconocidas”. Un material que acaba de presentarse en Science hace que empecemos a plantearnos si no seremos nosotros los alienígenas.

Para empezar el material ha batido el récord mundial de menor densidad para un material estructural que hasta ahora lo poseía un aerogel con una densidad de 1 mg/cm3, inferior a la del propio aire (1,2 mg/cm3). La microrred metálica creada por el equipo encabezado por Tobias Schaedler, de los laboratorios HRL (EE.UU.), tiene una densidad de sólo 0,9 mg/cm3, aún así presenta una capacidad muy alta para absorber energía y recuperar la forma tras una compresión. Estas dos características hacen que se le pueda encontrar aplicaciones en campos diversos, desde la astronáutica y aeronáutica hasta los elementos para la absorción de impactos o la de ruidos.

La microrred consiste en una red muy ordenada y controlada de riostras huecas interconectadas, hechas de una aleación de fósforo y níquel. En la muestra prototipo las riostras tenían unas 100 μm de diámetro y las paredes un espesor de 100 nm. Debido a la importancia de la estructura en las características mecánicas, el proceso de obtención es tanto o más importante que la composición química. Y espectacular.

Para crear la estructura primero hay que crear una plantilla de polímero. Para ello se coloca un placa opaca con agujeros circulares según un patrón sobre un depósito de monómero de tiol-eno fotosensible en estado líquido. Se ilumina la placa con luz ultravioleta y donde la luz llega al monómero, éste polimeriza; la polimerización supone un cambio en el índice de refracción con respecto al monómero, por lo que conforme la polimerización avanza se va creando un túnel óptico por el que la luz se ve dirigida, como en una fibra óptica. Esto es, se forma una guía de ondas del fotopolímero autopropagada o, para visualizarlo mejor, una “fibra” dentro del depósito de monómero líquido. Eligiendo placas distintas se puede conseguir que estas fibras tengan distintas direcciones y que se intersecten, creando una red interconectada. Se elimina entonces el monómero que no ha reaccionado con un disolvente y el resultado es una estructura de microrred, en la que las guías de onda autopropagadas son los miembros estructurales de la red, las riostras.

Esta plantilla de la red se sumerge entonces en una disolución de catalizador antes de introducirla en una disolución de niquel-fósforo. La aleación de níquel-fósforo se deposita catalíticamente en la superficie de las riostras de polímero hasta un espesor de 100 nm. Una vez terminada la deposición, el polímero se elimina con hidróxido sódico, lo que deja una geometría de red idéntica pero de tubos huecos de níquel-fósforo. La estructura es tan liviana que si tomamos una unidad de volumen sólo el 0,01% estará ocupado por la aleación, de aquí la densidad tan sumamente baja.

Al igual que ocurre con las construcciones de ingeniería, las propiedades de la estructura son diferentes a la de la aleación en bruto. Ésta es muy frágil, pero cuando se comprime la microrred los tubos huecos no se parten, sino que se doblan como si fuesen pajitas de refresco, con un alto grado de elasticidad . La microrred puede comprimirse hasta la mitad de su volumen y retorna a su forma original sin daño apreciable. (Véase el vídeo).



tomado de:
http://www.experientiadocet.com/2011/11/una-estructura-metalica-mas-ligera-que.html

Schaedler, T., Jacobsen, A., Torrents, A., Sorensen, A., Lian, J., Greer, J., Valdevit, L., & Carter, W. (2011). Ultralight Metallic Microlattices Science, 334 (6058), 962-965 DOI: 10.1126/science.1211649

Gases Ideales: Leyes

Las leyes de los gases ideales relacionana las variables de presión (P), el volumen (V) y la temperatura (T).

La ley de Boyle - Mariotte relaciona inversamente las proporciones de
volumen y presión de un gas, manteniendo la temperatura constante:

P1. V1 = P2 . V2

La ley de Gay-Lussac afirma que el volumen de un gas......., a presión constante, es directamente proporcional a la temperatura absoluta:

V1/T1 = V2/T2

La ley de Charles sostiene que, a volumen constante, la presión de un gas es directamente proporcional a la temperatura absoluta del sistema:
P1/T1 = P2/T2

La temperatura se mide en kelvin (273 ºK = 0ºC) ya que no se puede dividir por cero.

Ley universal de los gases

De las tres leyes anteriores se deduce

P1/T1 =P2/T2; V1/T1 = V2/T2; P1.V1=P2.V2


POR TANTO

P1.V1.T2 = P2.V2.T1

Ley de los Gases Generalizada
En base a la hipótesis de Avogadro puede considerarse una generalización de la ley de los gases. Si el volumen molar (volumen que ocupa un mol de molécula de gas) es el mismo para todos los gases en CNPT, entonces podemos considerar que el mismo para todos los gases ideales a cualquier temperatura y presión que se someta al sistema. Esto es cierto debido a que las leyes que gobiernan los cambios de volumen de los gases con variaciones de temperatura y presión son las mismas para todos los gases ideales. Se relaciona entonces, proporcionalmente, el número de moles (n), el volumen, la presión y la temperatura: P.V ~ n T. Para establecer una igualdad debemos añadir una constante (R) quedando:


P.V = n . R . T


El valor de R se calcula a partir del volumen molar en CNPT:
R = PV/nT = 1 atm. 22,4 L/1 mol. 273 K = 0.08205 atm.L/mol.K




¿Como se prepara una solucion?

HE AQUI UN VIDEO QUE DESCRIBE COMO SE PREPARA UNA SOLUCION

24/4/12

Rendimiento

La cantidad de producto que se obtiene si reacciona todo el reactivo limitante se denomina el rendimiento teórico de la reacción.

La cantidad de producto que se obtiene realmente en una reacción es el rendimiento real

Veamos el siguiente ejemplo:
Dada la siguiente reacción:
A + B --> 2C
Calcule el rendimiento de la reacción si al mezclar 5 g de A con exceso de B se obtienen 3,8 g de C. Datos: Peso molecular de A = 5 g, Peso molecular C = 2,5 g.
· UD debe haberse dado cuenta de que el reactivo limitante es A
· según los coeficientes estequiométricos: 1 mol de A reacciona con uno de B para producir 2 de C
· según la relación estequiométrica anterior: 5 g de A producen 2 (2,5 g) = 5 g de C (esto al máximo rendimiento = rendimiento teórico de la reacción)
· se produjeron realmente solo 3, 8 g de C
· rendimiento real = (3,8/5,0) x 100 = 76%

¿Cómo hacer para saber cuál es el reactivo limitante de una reacción?

Calculando los moles de producto que se obtienen con cada reactivo, suponiendo que el resto de reactivos están en cantidad suficiente. Aquel reactivo que nos dé el menor número potencial de moles de producto es el reactivo limitante. Al resto de reactivos, presentes en mayor cantidad que la necesaria para reaccionar con la cantidad del reactivo limitante, se les denomina reactivos en exceso.

Ejemplo:

Considere la siguiente reacción:


CH4(g) + 2O2(g) = CO2(g) + 2H2O (l)


Suponga que se mezclan 2 g de CH4 con 10 g de O2. Quien es el reactivo limitante?? Cuanto se puede obtener de agua y dióxido de carbono?

1. Primero tenemos que convertir los gramos de reactivos en moles:

1 mol de CH4 pesa 16 gramos (12 del C + 4 del H) por lo que 2 gramos serán (por regla de tres) 0,125 moles

 1 mol de O2 pesa 32 gramos por lo que 10 gramos serán (por regla de tres) 0,3125 moles


2. Luego definimos la proporción estequiométrica entre reactivos y productos:

1 mol de metano reacciona con dos moles de oxigeno


3. Calculamos el número de moles de reactivos que se consumirían si cada reactivo se consumiese en su totalidad:


0,125 moles de metano reaccionarían con 0,125x2 moles de oxigeno = 0,25 moles de oxigeno


0,3125 moles de oxigeno reaccionaría con 0,3125/2 moles de metano = 0,15625 moles de metano

Entonces:


4. El reactivo limitante es el metano y podremos obtener como máximo 0.125 moles de dióxido de carbono (relación 1 mol de metano 1 mol de dióxido) y 0.25 moles de agua (relación 1mol de metano dos de agua). Además, sobraran 0,0625 moles de oxigeno (0,3125 moles iniciales menos 0,25 moles que reaccionaron).


Que es un Reactivo Limitante?

Supongamos que tenemos que preparar 10 pebetes de jamón y queso. Para preparar un pebete se necesitan un pan, una feta de jamón y otra de queso. Hay 10 panes, 10 fetas de queso y 8 de jamón. Podremos preparar solamente 8 pebetes de jamón y queso y ni uno más porque no hay más jamón. Decimos entonces que el jamón es el ingrediente limitante del número de pebetes a preparar.

En una reacción química la situación es similar: una vez se haya consumido uno de los reactivos la reacción se detiene.

CH4(g) + 2O2(g) = CO2(g) + 2H2O (l)

 

Así ,si queremos obtener 2 moles de agua necesitaremos partir de 1 mol de metano y dos moles de oxígeno (porque la estequiometría de la reacción es 1 moles de metano reaccionan con 2 moles de oxígeno para dar dos moles de agua).

Que pasaría si en lugar de dos moles de oxigeno tenemos solo 1 mol??

Una vez haya reaccionado todo el oxigeno nos quedara sobrando metano sin reaccionar y se habrán obtenido solo un mol de agua, es decir, entonces la reacción se terminara cuando medio (1/2) mol de metano haya reaccionado un mol de oxigeno (todo el oxigeno presente).

Al reactivo que se ha consumido en su totalidad en una reacción química se le denomina reactivo limitante, ya que limita la cantidad de producto formado. Así en el ejemplo anterior el oxigeno era el reactivo limitante, ya que con  1 mol de oxígeno solo medio mol de metano reacciona (y sobra medio mol de metano)



21/4/12

Reacciones y Ecuaciones Quimicas


Una reacción química es el proceso en el cual una sustancia (o sustancias) cambia para formar una o más sustancias nuevas, es decir es un proceso de cambio de unos reactivos iniciales a unos productos finales

Las reacciones químicas se representan mediante ecuaciones químicas. Por ejemplo el carbono (C) podría reaccionar con oxígeno gaseoso (O2) para formar dióxido de carbono(CO2). La ecuación química para esta reacción se escribe:

C + O2 = CO2

El '+' se lee como “reacciona con” y la flecha significa “produce”. Las fórmulas químicas a la izquierda de la flecha representan las sustancias de partida denominadas reactivos. A la derecha de la flecha están las formulas químicas de las sustancias producidas denominadas productos de la reacción. Los números al lado de las formulas son los coeficientes( el coeficiente 1 se omite).

En la reacción anterior el C y el O2 son los reactivos, el CO2 el producto.

La reacción de formación del agua se escribe:

2H2 + O2 = 2H2O

Nótese en la reacción anterior (formación del agua) que el numero de átomos de cada elemento a cada lado de la ecuación es el mismo:

Según la ley de la conservación de la masa los átomos ni se crean, ni se destruyen, durante una reacción química. Por lo tanto una ecuación química ha de tener el mismo número de átomos de cada elemento a ambos lados de la flecha. Se dice entonces que la ecuación está balanceada.


Balancear Ecuaciones Quimicas


Como se balancean las ecuaciones químicas?

1) Se sigue un procedimiento estandarizado que se describe a continuación:

2) Se determinan los reactivos y los productos de la reacción química

3) Se escribe la ecuación química reactivos a productos

4) Se balancea la ecuación de la siguiente forma:

-- Se empieza por igualar la ecuación probando diferentes coeficientes para lograr que el número de átomos de cada elemento sea igual en ambos lados de la ecuación. Los subíndices de las fórmulas no se pueden cambiar).

-- Primero se buscan los elementos que aparecen una sola vez en cada lado de la ecuación y con igual número de átomos: las fórmulas que contienen estos elementos deben tener el mismo coeficiente. Por lo tanto, no es necesario ajustar los coeficientes de estos elementos en ese momento.

-- Después se buscan los elementos que aparecen sólo una vez en cada lado de la ecuación, pero con diferente número de átomos y se balancean estos elementos. Por último se balancean los elementos que aparecen en dos o más fórmulas del mismo lado de la ecuación.

--Se verifica que la ecuación igualada tenga el mismo número total de átomos de cada tipo en ambos lados de la flecha de la ecuación.

Ejemplo:
Consideremos la combustión del gas metano (CH4). Esta reacción consume oxígeno (O2) y produce agua (H2O) y dióxido de carbono (CO2). Podemos entonces escribir la ecuación química:

CH4 + O2 = CO2 + H2O

Ahora contamos el número de átomos de cada elemento en reactivos y productos:

Reactivos:
C =1, H = 4, O = 2

Productos:
C = 1, H = 2, O = 3,

El carbono y el hidrógeno aparecen en un compuesto de los reactivos y en otro de los productos.

Hay igual numero de átomos de carbono en los reactivos que en los productos, pero dos veces más hidrógeno en los reactivos que en los productos y 1,5 veces mas oxigeno en los productos que en los reactivos.

Esto se puede arreglar balanceando la reacción, de manera de igualar el numero de átomos de cada especie química en cada lado de la ecuación. El carbono ya esta igualado, o sea no hay que hacer nada. Para el H hay que multiplicar por dos (2) en el agua, así ahora hay 4 átomos de H a cada lado. Pero ahora tenemos que a la derecha (productos) hay 4 átomos de oxigeno (dos del CO2 y dos del 2H2O), mientras que a la izquierda solo dos, por lo cual hay que multiplicar por dos el Oxigeno de la izquierda (reactivos)

CH4 + 2O2 = CO2 + 2H2O

Ahora ya tenemos la ecuación balanceada y la podemos leer como:

una molécula de metano reaccionan con dos de oxígeno produciendo una molécula de dióxido de carbono y dos moléculas de agua.

El estado físico de los reactivos y productos puede indicarse mediante los símbolos (g), (l) y (s), para indicar los estados gaseoso, líquido y sólido, respectivamente.
Por ejemplo:

CH4(g) + 2O2(g) = CO2(g) + 2H2O (l)

Lo ideal es que en una reacción química los reactivos estuviesen en la correcta proporción estequiométrica, es decir en aquella proporción que describe la ecuación química balanceada. Sin embargo, lo usual suele ser que se use un exceso de uno o más reactivos, para conseguir que reaccione la mayor cantidad posible del reactivo menos abundante.

Enlace ionico y cloruro de sodio

El Cloruro de Sodio (NaCl) esta formado por un atomo de sodio y uno de cloro. Ambos se mantienen unido por una fuerza electrostatica generada por la formacion de iones producto de una transferencia de electrones.

Debido a la transferencia de electrones el sodio se transforma en catión (ion de carga positiva) y el cloro en anión (ion de carga negativa). Este intercambio de electrones se refleja en la diferencia de tamaño entre los átomos antes y después del enlace (izquierda).

Atraídos por fuerzas electrostáticas los iones se organizan formando una red cristalina en la que cada uno es fuertemente atraído hacia un grupo de ‘vecinos próximos’ de carga opuesta y, en menor medida, hacia todos los demás iones de carga opuesta a través de todo el cristal.

Modelo de mar de electrones


Para explicar las propiedades características de los metales (su alta conductividad eléctrica y térmica, ductilidad y maleabilidad, ...) se ha elaborado un modelo de enlace metálico conocido como modelo de la nube o del mar de electrones:

Los elementos con un enlace metálico están compartiendo un gran número de electrones de valencia, formando un mar de electrones rodeando un enrejado gigante de cationes. Los metales tienen puntos de fusión más altos por lo que se deduce que hay enlaces más fuertes entre los distintos átomos. La vinculación metálica es no polar, apenas hay (para los metales elementales puros) o muy poco (para las aleaciones) diferencia de electronegatividad entre los átomos que participan en la interacción de la vinculación, y los electrones implicados en que es la interacción a través de la estructura cristalina del metal. El enlace metálico explica muchas características físicas de metales, tales como fuerza, maleabilidad, ductilidad, conducción del calor y de la electricidad, y lustre. La vinculación metálica es la atracción electrostática entre los átomos del metal o los iones y electrones deslocalizados. Esta es la razón por la cual se explica un deslizamiento de capas, dando por resultado su característica maleabilidad y ductilidad. Los átomos del metal tienen por lo menos un electrón de la valencia, no comparten estos electrones con los átomos vecinos, ni pierden electrones para formar los iones. En lugar los niveles de energía externos de los átomos del metal se traslapan. Son como enlaces covalentes.

Los átomos de los metales tienen pocos electrones en su última capa, por lo general 1, 2 ó 3. Éstos átomos pierden fácilmente esos electrones (electrones de valencia) y se convierten en iones positivos, por ejemplo Na+, Cu2+, Mg2+. Los iones positivos resultantes se ordenan en el espacio formando la red metálica. Los electrones de valencia desprendidos de los átomos forman una nube de electrones que puede desplazarse a través de toda la red. De este modo todo el conjunto de los iones positivos del metal queda unido mediante la nube de electrones con carga negativa que los envuelve.

Metales y Enlace Metalico


Las características básicas de los elementos metálicos son producidas por la naturaleza del enlace metálico. Entre ellas destacan:

  • Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y sus puntos de fusión y ebullición varían notablemente.
  • Las conductividades térmicas y eléctricas son muy elevadas. (esto se explica por la enorme movilidad de sus electrones de valencia)
  • Presentan brillo metálico.
  • Son dúctiles y maleables. (la enorme movilidad de los electrones de valencia hace que los cationes metálicos puedan moverse sin producir una situación distinta, es decir, una rotura)
  • Pueden emitir electrones cuando reciben energía en forma de calor.
  • Tienden a perder electrones de sus últimas capas cuando reciben cuantos de luz (fotones), fenómeno conocido como efecto fotoeléctrico.
El enlace metálico es característico de los elementos metálicos, es un enlace fuerte, primario, que se forma entre elementos de la misma especie. Los átomos, al estar tan cercanos uno de otro, interaccionan los núcleos junto con sus nubes electrónicas empaquetándose en las tres dimensiones, por lo que quedan rodeados de tales nubes. Estos electrones libres son los responsables que los metales presenten una elevada conductividad eléctrica y térmica, ya que estos se pueden mover con facilidad si se ponen en contacto con una fuente eléctrica. Presentan brillo y son maleables.

19/4/12

Teoria del Enlace de Valencia

La superación del modelo de Bohr y el desarrollo del modelo atómico de la mecánica cuántica tuvo una clara repercusión en las ideas sobre el enlace químico en general y sobre el covalente en particular. Uno de los enfoques mecanocuánticos del enlace covalente se conoce como teoría del enlace de valencia y permite comprender en términos no sólo de energías, sino también de fuerzas, el fenómeno del enlace entre átomos.

La formación del enlace covalente simple tiene lugar cuando los orbitales correspondientes a dos electrones desapareados de átomos diferentes se superponen o solapan, dando lugar a una región común en la cual los dos electrones con espines opuestos, tal y como exige el principio de exclusión de Pauli, ocupan un mismo orbital. Ese par compartido constituye el elemento de enlace entre los dos átomos. Así, por ejemplo, cuando dos átomos de H se aproximan suficientemente, existe una disposición en la cual sus nubes electrónicas están parcialmente solapadas y para la que la energía potencial del conjunto es mínima, constituyendo, pues, una situación de enlace. En términos electrónicos puede afirmarse que el orbital 1s de cada átomo de hidrógeno, semiocupado por su electrón correspondiente, es completado por el electrón del otro átomo de hidrógeno. Los dos electrones con espines opuestos de este par, son atraídos entonces por cada uno de los núcleos, constituyendo el par de enlace. La existencia de este par común es lo que determina que los núcleos estén ligados entre sí con las limitaciones que, en cuanto a proximidad, imponen las fuerzas de repulsión nuclear.

La idea de comparación de electrones de Lewis sigue, de algún modo, presente en la teoría del enlace de valencia, aunque se abandona la regla del octete y se sustituye por la condición de que dos electrones desapareados puedan ocupar un mismo orbital. El número de enlaces covalentes posible depende, entonces, del número de electrones desapareados presentes en el átomo correspondiente o en algún estado excitado previo a la formación de la molécula



Enlaces: Teoria de Lewis

Ante la diversidad de elementos químicos existentes en la naturaleza cabe preguntarse cuál es la razón por la que unos átomos se reúnen formando una molécula y otros no; o de otra manera, por qué no toda molécula o agrupación de átomos imaginable tiene existencia real. Una primera respuesta puede hallarse en la tendencia observada en todo sistema físico a alcanzar una condición de mínima energía. Aquella agrupación de átomos que consiga reducir la energía del conjunto dará lugar a una molécula, definiendo una forma de enlace químico que recibe el nombre de enlace covalente.
Junto con esa idea general de configuración de energía mínima, otros intentos de explicación de este tipo de enlace entre átomos han sido planteados recurriendo a las características fisicoquímicas de las estructuras electrónicas de los átomos componentes.

La teoría de Lewis
El químico estadounidense G. B. Lewis (1875-1946) advirtió que el enlace químico entre átomos no podía explicarse como debido a un intercambio de electrones. Dos átomos iguales intercambiando electrones no alterarían sus configuraciones electrónicas; las ideas válidas para el enlace iónico no eran útiles para explicar de una forma general el enlace entre átomos. Sugirió entonces que este tipo de enlace químico se formaba por la comparación de uno o más pares de electrones o pares de enlace. Por este procedimiento los átomos enlazados alcanzaban la configuración electrónica de los gases nobles. Este tipo de configuración de capas completas se corresponde con las condiciones de mínima energía o máxima estabilidad características de la situación de enlace.
La teoría de Lewis, conocida también como teoría del octete por ser éste el número de electrones externos característicos de los gases nobles, puede explicar, por ejemplo, la formación de la molécula de yodo I2:
Ambos átomos, que individualmente considerados tienen siete electrones en su capa externa, al formar la molécula de yodo pasan a tener ocho mediante la comparación del par de enalce .
Existen moléculas cuya formación exige la comparación de más de un par de electrones. En tal caso se forma un enlace covalente múltiple. Tal es el caso de la molécula de oxígeno O2:

para cuya formación se comparten dos pares de electrones. Representado cada par de electrones mediante una línea resulta:
que indica más claramente la formación de un doble enlace.
En la molécula de nitrógeno N2 sucede algo semejante, sólo que en este caso se han de compartir tres pares de electrones para alcanzar el octete, con la formación consiguiente de un triple enlace:
Esta explicación puede extenderse al caso de las moléculas formadas por átomos de elementos no metálicos diferentes entre sí, tales como HCl o NH3 por ejemplo:
Lewis contempló la posibilidad extrema de que los pares electrónicos de enlace fueran aportados por un sólo átomo. Tal es el caso del ion amonio en el cual el atomo de nitrogeno aporta el par de electrones al enlace con el ion H+:
Este tipo de enlace covalente se denomina coordinado.

Los subíndices que aparecen en las fórmulas químicas de compuestos covalentes expresan el número de átomos que se combina para formar una molécula y están, por tanto, relacionados con la capacidad de enlace de cada uno de ellos, también llamada valencia química. Según la teoría de Lewis, la configuración electrónica de la capa externa condiciona dicha capacidad y es la responsable del tipo de combinaciones químicas que un determinado elemento puede presentar.

4/4/12

Mira a un atomo por dentro

Si quieres ver como es un átomo cualquiera por dentro fíjate en esta pagina en donde podrás selecciona a un elemento cualquiera (hidrógeno, oxígeno, etc.) y "ver" como es el átomo por dentro.



Evolución modelos atómicos

He aquí un grafico que muestra como ha ido cambiando la concepción del átomo en diferentes modelos atómicos


Isótopos

Los isótopos son átomos que tienen el mismo número atómico, pero diferente número másico, lo cual quire decir que un mismo elemento puede "pesar" diferente. La mayoría de los elementos tiene dos ó más isótopos. La diferencia en peso entre dos isótopos de un elemento es el número de neutrones en el núcleo.


El número de neutrones de un elemento químico se puede calcular como A-Z, es decir, como la diferencia entre el número másico y el número atómico. Por ejemplo, para el carbono Z=6. Es decir, todos los átomos de carbono tienen 6 protones y 6 electrones. Sin embargo, el carbono tiene dos isótopos: uno con A=12, con 6 neutrones y otro con número másico 13 (7 neutrones), que se representan como:

Número atómico y numero másico

En un átomo de un elemento cualquiera se tiene la misma cantidad de protones y de electrones . Esta cantidad (el numero de protones) recibe el nombre de número atómico, y se designa por la letra "Z".

A la cantidad total de protones más neutrones presentes en un núcleo atómico se denomina número másico y se designa por la letra "A".

Si designamos por "X" a un elemento químico cualquiera, su número atómico y másico se representa por la siguiente simbología (ver imagen a la derecha):




Así el número de neutrones resulta de la ecuacion neutrones (n) = A - Z

Atomos y particulas subatomicas

La palabra átomo proviene del idioma griego y significa “no divisible” o “indivisible” por lo que el átomo se consideraría la particular mas pequeña de la materia que no se puede dividir. Este concepto fue inventado por Demócrito en el 400 ac y en aquella época se creía que el átomo era efectivamente la particula más pequeña posible de la materia (lo cual no es cierto ya que hay partículas subatómicas)

En los átomos se reconoce la existencia de partículas con carga eléctrica negativa, llamados electrones, los cuales giran en diversas "órbitas" (mas bien orbitales) o niveles de energía, alrededor de un núcleo central con carga eléctrica positiva. El átomo en su conjunto y sin la presencia de perturbaciones externas es eléctricamente neutro.

PArticulas Subatomicas


EL ELECTRÓN : Es una partícula elemental con carga eléctrica negativa igual a 1,602 x 10-19 Coulomb y masa igual a 9,1083 x 10-28 g, que se encuentra formando parte de los átomos de todos los elementos

EL NEUTRÓN: Es una partícula elemental eléctricamente neutra y masa ligeramente superior a la del protón, que se encuentra formando parte de los átomos de todos los elementos

EL PROTÓN: Es una partícula elemental con carga eléctrica positiva igual a 1,602 x 10-19 Coulomb y cuya masa es 1837 veces mayor que la del electrón. La misma se encuentra formando parte de los átomos de todos los elementos.
En un átomo de un elemento cualquiera se tiene la misma cantidad de protones y de electrones .

Entrada destacada

AMAZON: Guía Practica Balanceo Redox